Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-Iodobenzohydrazide

Rifat Ara Jamal, ${ }^{\text {a* }}$ Uzma Ashiq, ${ }^{\mathbf{b}}$ Muhammad Nadeem Arshad, ${ }^{\text {c }}$ Zahida Tasneem Maqsood ${ }^{\text {d }}$ and Islam Ullah Khan ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Chemical Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan, ${ }^{\mathbf{b}}$ Department of Mathematics and Basic Sciences, NED University of Engineering and Technology, Karachi 75270, Pakistan, ${ }^{\mathbf{c}}$ Department of Chemistry, Government College University, Lahore, Pakistan, and d Department of Chemistry, University of Karachi, Karachi 75270, Pakistan Correspondence e-mail: rifat_jamal@yahoo.com

Received 19 September 2008; accepted 17 October 2008

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.029 ; w R$ factor $=0.106$; data-to-parameter ratio $=19.0$.

In the structure of the title compound, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{IN}_{2} \mathrm{O}$, the hydrazide group is inclined at 13.3 (3) ${ }^{\circ}$ with respect to the benzene ring. The structure is stabilized by intermolecular $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the hydrazide group, resulting in six- and ten-membered rings with $R_{2}^{2}(6)$ and $R_{2}^{2}(10)$ graph-set notations, respectively.

Related literature

For related structures, see: Kallel et al. (1992); Saraogi et al. (2002); Ashiq, Jamal et al. (2008). For related literature, see: Ara et al. (2007); Ashiq, Ara et al. (2008); Bernstein et al. (1994).

Experimental

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{IN}_{2} \mathrm{O}$
$V=1681.72(19) \AA^{3}$
$M_{r}=262.05$
Monoclinic, $C 2 / c$
$a=28.4394$ (18) £
$b=4.4514$ (3) A
$c=13.3216(9) \AA$
$\beta=94.292(2)^{\circ}$

Data collection

Bruker KappaAPEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.581, T_{\text {max }}=0.806$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029 \quad \mathrm{H}$ atoms treated by a mixture of
$\begin{array}{ll}w R\left(F^{2}\right)=0.106 & \text { independent and constrained } \\ S=1.05 & \text { refinement }\end{array}$
$S=1.05$
2069 reflections
109 parameters
3 restraints

9236 measured reflections 2069 independent reflections 1645 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.030$
refinement
$\Delta \rho_{\max }=0.55$ e \AA^{-3}
$\Delta \rho_{\min }=-1.33 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.857(10)$	$2.19(3)$	$2.964(5)$	$151(5)$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots 1^{\mathrm{ii}}$	$0.862(10)$	$2.240(14)$	$3.094(5)$	$170(5)$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{iii}}$	0.93	2.56	$3.257(5)$	132

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x, y,-z+\frac{1}{2}$; (iii) $x,-y+1, z+\frac{1}{2}$.
Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the Higher Education Commission, Pakistan, for providing the Kappa APEXII X-ray diffractometer at GCU, Lahore, and BANA International for their support in collecting the crystallographic data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2109).

References

Ara, R., Ashiq, U., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Lodhi, M. A. \& Choudhary, M. I. (2007). Chem. Biodivers. 4, 58-71.

Ashiq, U., Ara, R., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Khan, S. N., Siddiqui, H. \& Choudhary, M. I. (2008). Chem. Biodivers. 5, 82-92.

Ashiq, U., Jamal, R. A., Mahroof-Tahir, M., Keramidas, A. D., Maqsood, Z. T., Khan, K. M. \& Tahir, M. N. (2008). Anal. Sci. X, 24, 103-104.
Bernstein, J., Etter, M. C. \& Leiserowitz, L. (1994). Structure Correlation, edited by H.-B. Bürgi \& J. D. Dunitz, Vol. 2, pp. 431-507. New York: VCH. Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Kallel, A., Amor, B. H., Svoboda, I. \& Fuess, H. (1992). Z. Kristallogr. 198, 137-140.
Saraogi, I., Mruthyunjayaswamy, B. H. M., Ijare, O. B., Jadegoud, Y. \& Guru Row, T. N. (2002). Acta Cryst. E58, o1341-o1342.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

4-Iodobenzohydrazide

R. A. Jamal, U. Ashiq, M. N. Arshad, Z. T. Maqsood and I. U. Khan

Comment

The title compound and its oxovanadium(IV) complex were investigated for their α-glucosidase inhibitory and urease activities. Free hydrazide ligand was found to be inactive, whereas its oxovanadium(IV) complex was found to be a potent inhibitor of α-glucosidase (Ashiq, Ara et al., 2008) and urease (Ara et al., 2007). Continuing our studies on the enzyme inhibition behavior of the title compound, (I), and to investigate the change in its activity due to complexation with vanadium center, we have synthesized (I) and report its crystal structure in this paper. The structures of benzhydrazide (Kallel et al., 1992), para-chloro (Saraogi et al., 2002) and para-bromo (Ashiq, Jamal et al., 2008) analogues of (I) have already been reported.

The molecule of the title compound (Fig. 1) is far from planar as is evident from the dihedral angle of $13.3(3)^{\circ}$ between the mean-planes of the phenyl ring ($\mathrm{C} 1-\mathrm{C} 6$) and the hydrazide moiety ($\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{O} 1 / \mathrm{C} 7$). The bond distances and bond angles in (I) are similar to the corersponding distances and angles reported in the structures quoted above. The molecules of (I) are involved in two types of hydrogen bonds involving hydrazide moiety. On one hand, the molecules lying about inversion centers form six membered rings via $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{~N} 2{ }^{\mathrm{i}}$ hydrogen bonding. On the other hand, the molecules related by c-glide form ten membered rings via $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 1{ }^{\mathrm{ii}}$; detail of the hydrogen bonding have been presented in Table 1 and depicted in Fig. 2. The six and ten membered rings represent $R_{2}{ }^{2}(6)$ and $R_{2}{ }^{2}(10)$ graph set patterns, respectively (Bernstein et al., 1994).

Experimental

All reagent-grade chemicals were obtained from Aldrich and Sigma Chemical companies and were used without further purification. To a solution of ethyl-4-iodobenzoate ($5.5 \mathrm{~g}, 20 \mathrm{mmol}$) in 75 ml ethanol, hydrazine hydrate ($5.0 \mathrm{ml}, 100 \mathrm{mmol}$) was added. The mixture was refluxed for 5 h and a solid was obtained upon removal of the solvent by rotary evaporation. The resulting solid was washed with hexane to afford 4-iodobenzohydrazide (yield 84\%).

Refinement

H -atoms bonded to N -atoms were located from a difference map and were included in the refinement at those positions (using DFIX command with $\mathrm{N}-\mathrm{H}=0.86(1) \AA$) while the aryl H -atoms were positioned geometrically in a riding mode, with $\mathrm{C}-\mathrm{H}=0.93 \AA$; for all H -atoms, $\mathrm{U}_{\text {iso }}=1.2$ times U_{eq} of the parent atoms.

Figures

supplementary materials

Fig. 2. The hydrogen bonding patterns of (I) represented by dashed lines in the unit cell; Hatoms not involved in H -bonds have been excluded.

4-Iodobenzohydrazide

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{IN}_{2} \mathrm{O}$
$M_{r}=262.05$

Monoclinic, C2/c
Hall symbol: -C 2yc
$a=28.4394$ (18) \AA
$b=4.4514$ (3) \AA
$c=13.3216(9) \AA$
$\beta=94.292$ (2) ${ }^{\circ}$
$V=1681.72(19) \AA^{3}$
$Z=8$

$$
\begin{aligned}
& F_{000}=992 \\
& D_{\mathrm{x}}=2.072 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Mo} K \alpha \text { radiation } \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 3495 \text { reflections } \\
& \theta=1.4-28.3^{\circ} \\
& \mu=3.76 \mathrm{~mm}^{-1} \\
& T=296(2) \mathrm{K} \\
& \text { Needle, colorless } \\
& 0.12 \times 0.08 \times 0.06 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker KappaAPEXII CCD diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=296(2) \mathrm{K}$
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.581, T_{\text {max }}=0.806$
9236 measured reflections

2069 independent reflections
1645 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=28.3^{\circ}$
$\theta_{\text {min }}=1.4^{\circ}$
$h=-37 \rightarrow 37$
$k=-5 \rightarrow 5$
$l=-17 \rightarrow 17$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.106$
$S=1.05$
2069 reflections
109 parameters
3 restraints

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0565 P)^{2}+5.77 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.55 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.32 \mathrm{e} \AA^{-3}$
Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
I1	$0.215538(11)$	$1.09655(7)$	$0.64904(2)$	$0.05339(15)$
O1	$0.05919(14)$	$0.3811(8)$	$0.2873(2)$	$0.0582(10)$
N1	$0.03174(13)$	$0.1851(9)$	$0.4262(2)$	$0.0404(8)$
H1A	$0.0321(18)$	$0.170(11)$	$0.4905(9)$	0.049^{*}
N2	$-0.00239(14)$	$0.0017(10)$	$0.3743(2)$	$0.0408(8)$
H2A	$-0.0195(16)$	$0.119(9)$	$0.335(3)$	0.049^{*}
H2B	$0.0127(17)$	$-0.126(9)$	$0.341(3)$	0.049^{*}
C1	$0.09627(14)$	$0.5363(10)$	$0.4445(3)$	$0.0358(8)$
C2	$0.09382(15)$	$0.5693(10)$	$0.5484(3)$	$0.0403(9)$
H2	0.0695	0.4777	0.5799	0.048^{*}
C3	$0.12697(15)$	$0.7356(11)$	$0.6046(3)$	$0.0441(10)$
H3	0.1244	0.7611	0.6733	0.053^{*}
C4	$0.16380(15)$	$0.8638(9)$	$0.5594(3)$	$0.0397(9)$
C5	$0.16696(17)$	$0.8370(11)$	$0.4566(3)$	$0.0489(11)$
H5	0.1918	0.9256	0.4260	0.059^{*}
C6	$0.13267(18)$	$0.6768(12)$	$0.3998(3)$	$0.0489(11)$

H6	0.1342	0.6637	0.3305	0.059^{*}
C7	$0.06129(16)$	$0.3608(9)$	$0.3801(3)$	$0.0375(9)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.0461(2)$	$0.0498(2)$	$0.0626(2)$	$-0.00097(13)$	$-0.00736(14)$	$0.00125(13)$
O1	$0.069(2)$	$0.080(3)$	$0.0273(13)$	$-0.0221(19)$	$0.0124(14)$	$-0.0003(14)$
N1	$0.0469(19)$	$0.0465(19)$	$0.0277(14)$	$-0.0046(17)$	$0.0010(13)$	$0.0067(14)$
N2	$0.050(2)$	$0.0425(19)$	$0.0302(15)$	$0.0003(17)$	$0.0039(14)$	$0.0051(15)$
C1	$0.0384(19)$	$0.038(2)$	$0.0317(17)$	$0.0053(17)$	$0.0080(14)$	$0.0015(16)$
C2	$0.039(2)$	$0.051(3)$	$0.0317(17)$	$-0.0001(18)$	$0.0109(15)$	$0.0041(17)$
C3	$0.043(2)$	$0.054(3)$	$0.0352(18)$	$0.001(2)$	$0.0049(16)$	$0.0000(19)$
C4	$0.036(2)$	$0.039(2)$	$0.044(2)$	$0.0035(16)$	$-0.0004(16)$	$0.0018(17)$
C5	$0.048(2)$	$0.053(3)$	$0.047(2)$	$-0.008(2)$	$0.0168(19)$	$0.002(2)$
C6	$0.055(3)$	$0.056(3)$	$0.038(2)$	$-0.004(2)$	$0.0156(19)$	$0.001(2)$
C7	$0.042(2)$	$0.041(2)$	$0.0309(17)$	$0.0060(17)$	$0.0088(15)$	$0.0037(15)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{I} 1-\mathrm{C} 4$	$2.098(4)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.237(5)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.332(5)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.410(6)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	$0.857(10)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	$0.862(10)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	$0.860(10)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.382(6)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.398(5)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2$	$123.3(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	$123(3)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	$114(3)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	$106(3)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	$107(4)$
$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	$112(5)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$118.3(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7$	$118.6(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$123.1(4)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$120.8(4)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.6
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$120.0(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.0
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.5(7)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-179.6(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-2.0(7)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$2.5(7)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{I} 1$	$-176.8(3)$

$\mathrm{C} 1-\mathrm{C} 7$	$1.486(6)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.375(6)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.371(6)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 4-\mathrm{C} 5$	$1.384(6)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.386(7)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.0
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.5(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{I} 1$	$118.8(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{I} 1$	$120.7(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$119.3(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.4
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	120.4
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$121.1(4)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	119.5
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	119.5
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$121.3(4)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 1$	$121.3(4)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1$	$117.4(3)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-178.3(4)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 1$	$-1.9(8)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1$	$2.7(7)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	$-178.5(4)$

sup-4

supplementary materials

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.6(7)$
$\mathrm{I} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$178.8(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$2.4(7)$

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$
166.3 (4)
168.4 (4)
-12.4 (6)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.857(10)$	$2.19(3)$	$2.964(5)$	$151(5)$
$\mathrm{N} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 1^{\mathrm{ii}}$	$0.862(10)$	$2.240(14)$	$3.094(5)$	$170(5)$
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{iii}}$	0.93	2.56	$3.257(5)$	132

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x, y,-z+1 / 2$; (iii) $x,-y+1, z+1 / 2$.

supplementary materials

Fig. 1

Fig. 2

